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LETTER TO THE EDITOR 

Critical level spacing distribution of two-dimensional 
disordered systems with spin-orbit coupling 
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t Physikabch-Technische Bundesmstalg Bnndesallee IM), D-38116 Braunschweig, Germany 
t Instita fiir Theorerisehe Physik, Universit5I Hamburg, Jningiusstrasse 9, D-20355 Hamburg, 
G e r ” y  

Received 15 March 1995, in final form 9 May 1995 

Abstract. The energy level s@tics of 2D electrons with spin-orbit scattering an considered 
near the disorder-induced meta-insulator transition. Using the Ando model, the neamt-level- 
spacing distribution is calculated numerically at the critical point. It is shown that the critical 
spacing distribution is size independent and has a Poisson-We decay at large spacings as distinct 
from the Gaussian asymptotic form obtained by the random-m5rk theory. 

Recently, the statistical description of electronic properties at the critical region near 
the Anderson transition in disordered systems has been a subject of great interest. 
Universal behaviour was proposed [ 1,2] for the variance of the ensemble-averaged number 
of energy levels in a given interval, ((SN)’) = ( N 2 }  - (N)’ ,  and for the nearest- 
level-spacing distribution P(s) .  A relation = a ( N )  could be extracted from 
numerical calculations for the three-dimensional Anderson model, while for P(s)  a universal 
combination of the well known Wigner surmise (small spacings) and the Poisson distribution 
(large spacings) was proposed. Recent analytical calculations [3, 41 suggested, however, 
another universal relation ((SN)’) = adp(N)Y/j3 near the critical transition (mobility edge) 
and the corresponding P ( s )  was different from both the Poisson and the Wlgner limit 
Universal means here that the result depends only on the symmetry class j3, the correlation 
exponent U = [d(l - y) ] - ’  and the spatial dimension d. The statistics of energy levels 
are governed by the symmetry of the Hamiltonian belonging to certain universality classes 
of the corresponding Gaussian ensembles of random matrices: orthogonal (j3 = 1). unitary 
( f i  = 2) and symplectic (0 = 4) [5]. 

In two-dimensional (2D) disordered systems a complete Anderson transition is expected 
only for the symplectic symmetry class. Two different models for describing the localization 
problem in two dimensions in the presence of spin-xbit coupling have been proposed [6,7].  
For the Ando model IS] the critical behaviour of the localization length was previously 
studied by means of the transfer-matrix method [9, 10, 111. The statistics of energy levels for 
symplectic symmetry in connection with the results of the random-matrix theory (RMT) was 
considered in the Evangelou-Ziman model [121 and the distribution P ( s )  at the transition 
point for this model has already been mentioned [13]. The multifmctal properties of the 
critical eigenstates in the symplectic case were investigated in [14, 151. 

In this paper we study the level statistics of electrons with spin-orbit coupling in 2D 
disordered systems. By using the Ando model we calculate numerically the correlations in 
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the exact one-electron energy spectrum at the metal-insulator transition. Our main result is 
that the probability density P ( s )  of neighbouring levels in the critical region is universal, 
i.e. it does not depend on the size of the system, and has a novel form. 

It is known that in the metallic phase P ( s )  is very close to the Wigner surmise [ 161 
appropriate for the symplectic symmetry class of the random Hamiltonians [I71 

where s is measured in units of the mean level spacing. In the strongly localized regime 
the energy spectrum is completely uncorrelated, and the distribution of the level spacings 
obeys the Poisson law 

P&) = exp(-s). (2) 
In addition to these two universal distributions one can expect that there is a third form 

of P ( s ) ,  which corresponds exactly to the metal-insulator transition. This new universal 
statistics had already been found for the 3D disordered systems without spin-orbit scattering 
(p  = 1) and confirmed numerically [Z 181. An analogous result was recently obtained in 
the unitary case (B = 2) [19], where timereversal symmetry is broken by the magnetic 
field. 

It is reasonable to suppose that a similar scaleinvariant universality of P ( s )  also holds at 
the critical point for 2D disordered electrons with spin-orbit coupling. Thus, we expect that 
in the thermodynamic limit there exist three possible limiting situations for fi  = 4, namely, 
the Wigner surmise equation (1) for the metallic regime, the Poisson law equation (2) for 
the insulating regime and the critical distribution P ( s )  at the mobility edge. Therefore, 
if L + CO, the level statistics change discontinuously twice, going from the delocalized 
regime to the transition point and, then, from the transition point to the localized regime. 

In order to calculate the critical level statistics we start with the Hamiltonian of the 
Ando model [81 

where c,, t and c,, are the creation and annihilation operators of an electron at a lattice site 
n = (x, y )  with the spin component U ,  and ni denotes the sites adjacent to the site n. The 
on-site energy E .  is randomly distributed around zero according to a box distribution with 
a width W. The parameter I specifies the degree of the disorder. The transfer matrices 
V(n, U ;  m, U ' )  = V,, Vy depend on the direction 

and describe the hopping between the nearest-neighbour sites in the lattice. The strength 
of the spin-orbit coupling is given by the parameter S = V,/V, where V = (V: + V,2)'IZ 
is taken as the unit of energy. In what follows we consider S = 1/2. It was earlier found 
by the transfer-matrix method [ 101 that the metal-insulator transition in the middle of the 
band E /  V = 0 occurs at a disorder W, f V = 5.14. 

Applying periodic boundary conditions, the exact discrete eigenvalue spectrum has been 
obtained from a numerical diagonalization of the Hamiltonian equation (3) using a Lanczos 
algorithm. For square lattices of h e a r  size L/a  = 50 (100) energy intervals [-1,0] 
([-OS. 01) were chosen. Within these intervals the density of states is almost constant, 
p = (ALZ)-' = 0.127. Here, a is the lattice constant and A the mean level spacing. The 
eigenvalues taken from these intervals belong to the critical region where the correlation 
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length 5 is larger than the system size L.  The total numbers of eigenvalues N were 94 672 
(300 realizations) and 101 744 (160 realizations) for L = 50a and L = 1 0 0 ~ .  respectively. 

S 

Figure 1. The level spacing distribution PO) for WO different system sizes at the critical 
disorder W,IV = 5.14. Solid lines correspond to Po&) and pP(r). respectively. The dotted 
line is a ht of equation (5 ). The inset shows the large-s behaviour of PO). The straight tine 
is a ht according to equalion (6 ). 

Figure 1 displays the level spacing distribution function P(s) calculated for the different 
sizes of the system at the metal-insulator transition. One can see that independently of the 
system size the data lie on a common curve. This critical P(s)  is very close to PGSE and 
passes the point SO w 1.63, where the two limiting distributions PGSE(S) and P&) cross. 
For small spacings P ( s )  0: s4. It is interesting to notice that our results differ from those 
obtained previously for smaller systems with the Evangelou-Ziman spin-orbit coupling 
model 1131. 

We applied the fitting function which was recently proposed for the description of the 
critical level distribution [3] 

P(s)  = Bs4 exp(-As2-Y) (5 1 
and found A = 2.77 f 0.05, B = 17.8 2C 0.8 and y = 0.28 2C 0.03. Using a confidence level 
of 95% (or = 0.05) the fitting procedure within the range 0 < s 3 where the statistics 
of our numerical data is rather good yielded ,yz = 29.2 which is less than the expected 
value x," = 63.4. Hence, the analytical formula (equation (5)) can be accepted within an 
approximate relative error of ( X ~ / N ) ~ / ~  w 2%. Although in the range 0 < s < 3 the 
calculated P(s )  is in g o d  agreement with equation (S), the exponent y obtained gives a 
different value of the correlation length exponent U = [(l - y )  d1-I w 0.7 as compared to 
the value U = 2.75 obtained numerically using the transfermatrix method [9, IO]. 

Moreover, for large spacings our results deviate markedly from the above equation (5) 
(inset of figure 1). Instead, the behaviour of P(s)  in the range of spacings 1.5 < s 5 4 is 
well described by the Poisson-lie asymptotic form 

P(s )  a exp(-rts) (6) 
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with a coefficient K = 4.0 f 0.2. This decay is much slower than both the Gaussian decay 
of equation (1) and the intermediate decay from equation (3, but faster than that for the 
insulating regime, equation (2). A similar exponential tail of the critical P(s)  was also 
found in the 3D case without spin-orbit interactions [20] for which the coefficient K is 
approximately a factor of two less. Such an asymptotic behaviour of the critical P ( s )  is 
in good agreement with a suggestion about the Gaussian form for the distribution of the 
number of levels lying within a given energy interval [l, 211. 

S 

Figure 2 The integrated probability l ( s )  at the critical disorder W, = 5.74. The solid curves 
are and :PO) for lhe metallic and insulating phases, respectively. The dotted line is 
obtained from equation (5). The inset shows the large-s part of /(SI. The straight line filling 
the data is Ln/(s) = -4.0s t 3.6. 

In order to diminish the magnitude of relative fluctuations due to the limited number 
of realizations and to analyse the symptotic behaviour of the level spacing distribution in 
detail, it is more convenient to consider a total probability function I ( $ )  = sp" P(s')ds'. 
This quantity implies a portion of spacings which are larger than a given s. It is clear that 
I ( 0 )  = 1 and 1," I (s') ds' = 1 regardless of the disorder. In the shongly localized regime 
I&) = exp(-s), and ZC;S&) can be calculated from the RMT. The results of the numerical 
calculations for the critical Z(s) are shown in figure 2. One again observes a discrepancy 
from both the GSE asymptotic and the I(s) obtained from equation (5). particularly when 
s is large. The form of the critical I ( $ )  is not sensitive to the change of the lattice size, 
in analogy with P(s ) .  'The Poisson tail as described by equation (6) is recovered for large 
spacings: In I ( s )  c( -s. We have checked that the slope of the linear behaviour of In I (s) at 
the transition does not depend on the width of the energy interval from which the levels are 
taken, as long as they belong to the critical region. In the range of very small probability 
(s t 3) the larger fluctuations observed are due to the insufficiency of the statistical data 
However, the accuracy of the total calculated I (s )  in higher than that of P(s) .  One should 
notice that the behaviour of the level spacing distribution obtained obviously does not reflect 
the information on the critical exponent v and the dimensionality d in the form expressed 
by equation (5). 
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In conclusion, we have presented results of computer simulations of the nearest-level- 
spacing distribution P ( s )  for 2D disordered systems in the presence of spin-orbit interaction. 
Exactly at the meta-insulator transition P(s)  and, consequently, the total probability of 
neighbouring spacings I ( s )  do not depend on the system size and are different from the 
universal limiting distributions corresponding to the metallic and the insulating regime. 
They appear to exhibit critical behaviour at the disorder W J V  = 5.74 and finite-size 
scaling properties around the critical point. The large-s parts of P(s)  and Z(s) obtained are 
shown to have a Poisson-like decay, so In P(s) = -KS where K M 4.0 is larger than it is 
for the insulating regime (K = 1). 

We are grateful to B Kramer and B Shklovskii for helpful discussions. IKhZh thanks the 
DAAD for financial support during his stay at the University of Hamburg. 
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